The Table of Polygonal Numbers
Definition. Polygonal Number. See: Wikipedia
Select $s\text - gonal$ $s=\ $Select $n=\ $
The $n$-th number of $s$-gonal numbers.
| 🙂 | Formula | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|---|
| Point | $n-\frac{1}{2}n(n-1)$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Line | $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Trangle | $n+\frac{1}{2}n(n-1)$ | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 |
| Square | $n^2$ | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 |
| Pentagon | $n+\frac{3}{2}n(n-1)$ | 1 | 5 | 12 | 22 | 35 | 51 | 70 | 92 |
| Hexagon | $n+2n(n-1)$ | 1 | 6 | 15 | 28 | 45 | 66 | 91 | 120 |
